Preliminary investigation of a fast temperature prediction approach for simple thin-walled parts produced with Wire Arc Additive Manufacturing

نویسندگان

چکیده

During Wire Arc Additive Manufacturing (WAAM), an arc welding process is used to deposit material. The evolution of temperature during the a key aspect affecting accuracy and mechanical properties. possibility predict therefore crucial for planning deposition sequence. Currently, Finite Element Method (FEM) well-established solution simulations. However, computational efficiency typically achievable with FEM limits its integration in phase. In addition FEM, Volume (FVM) also suitable numerical method simulating thermal problems, which could potentially deliver higher than FEM. A scheme able simulate WAAM proposed applicability tested test case derived from literature. By running implemented on CPU 64 cores, time more 100 times shorter real manufacturing was achieved, while keeping comparable results reported

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Layered Manufacturing of Thin-walled Parts

We describe a new algorithm we have developed for making partially hollow layered parts with thin, dense walls of approximately uniform thickness, for faster build times and reduced material usage. We have implemented our algorithm on a fused deposition modeling (FDM) machine, using separate build volumes for a loosely filled interior and a thin, solid, exterior wall. The build volumes are deri...

متن کامل

Thermoelectric Cooling-Aided Bead Geometry Regulation in Wire and Arc-Based Additive Manufacturing of Thin-Walled Structures

Wire and arc-based additive manufacturing (WAAM) is a rapidly developing technology which employs a welding arc to melt metal wire for additive manufacturing purposes. During WAAM of thin-walled structures, as the wall height increases, the heat dissipation to the substrate is slowed down gradually and so is the solidification of the molten pool, leading to variation of the bead geometry. Thoug...

متن کامل

Fabricating Superior NiAl Bronze Components through Wire Arc Additive Manufacturing

Cast nickel aluminum bronze (NAB) alloy is widely used for large engineering components in marine applications due to its excellent mechanical properties and corrosion resistance. Casting porosity, as well as coarse microstructure, however, are accompanied by a decrease in mechanical properties of cast NAB components. Although heat treatment, friction stir processing, and fusion welding were im...

متن کامل

Vibration Assisted Robotic Hot-wire Gas Tungsten Arc Welding (gtaw) for Additive Manufacturing of Large Metallic Parts

Most of the metal additive manufacturing technologies are focused on high cost and high end applications. There is in need, a low cost additive manufacturing technology suitable for low and high end metallic applications. Robotic automated welding can be considered as an alternative to manufactured large scale metal parts with layer by layer approach. However, many obstacles have to be overcome...

متن کامل

Wire Arc Additive Manufacturing of AZ31 Magnesium Alloy: Grain Refinement by Adjusting Pulse Frequency

Wire arc additive manufacturing (WAAM) offers a potential approach to fabricate large-scale magnesium alloy components with low cost and high efficiency, although this topic is yet to be reported in literature. In this study, WAAM is preliminarily applied to fabricate AZ31 magnesium. Fully dense AZ31 magnesium alloy components are successfully obtained. Meanwhile, to refine grains and obtain go...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Procedia CIRP

سال: 2022

ISSN: ['2212-8271']

DOI: https://doi.org/10.1016/j.procir.2022.09.185